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PRIMITIVES DE FONCTIONS 
Site MathsTICE  de Adama Traoré Lycée Technique Bam ako 

 
I– Primitives d’une fonction numérique : 
 
1- Activité : Soit la fonction f  : x   ֏  2x + 3 ;  
Calculer la dérivée de chacune des fonctions F ; G ; H définies par : 
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� Pour tout  x  de  Df , F’(x) = f (x) ; G’(x)= f (x) ; H’(x) = f (x). 
On dit que F ; G ; H sont des primitives  de f  sur Df. 
 
2- Définition : 
Soit f  une fonction définie sur une partie non vide [a ; b] de ℝ. On appelle 

fonction primitive de f  sur [a ; b], toute fonction F telle que : ∀ x ε [a ; b] ,  
F’(x) =  f  (x). 
 
 
 
3- Notations: 
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[ Prim f = F ]  ⇔  [  ∀ x ε [a ; b] , F’(x) =  f  (x) ] 
 
 
 
4- Remarques : 
 

• Si f est continue sur [a ; b]  alors sa primitive F est continue sur [a ; b]  
     ( car F est dérivable sur [a ; b] ). 

• Les fonctions qui à x :֏F(x) + C  (Cεℝ) sont appelées les primitives de f 
sur [a ; b]  

  
 5- Théorème (admis) : 
 

a) Si F est une primitive de f  sur [a ; b], toute autre primitive G de f sur 
[a ; b]   est de la forme : G(x) = F(x) + C. 

b) Si f  admet de primitives sur [a ; b], il en existe une et une seule 
prenant au point x0 donné une valeur y0 donnée. 

 
Exemple : Soit la fonction f définie par f(x)= cosx. Trouver la primitive F de f qui 

s’annule pour x = 
4

π  et celle qui prend la valeur 2 pour x = 
4

3π . 
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II- Propriétés :  
 
Soient f et g deux fonctions définies sur [a ; b] ; F et G leurs primitives respectives 
sur  [a ; b] . 
a) Prim (f+g) = Prim (f) + Prim (g) = F + G + Cste. 
b) Soit  α un réel, Prim (α f) =   α Prim (f). 

c) Prim (f ’×g) = [ f ×g ] – Prim (f ×g’)(appelée  Formule de primitivation par parties ). 
 

Exemple : Trouver les primitives de f définie par f(x) = x sinx. 
 
III - Calcul de Primitives :  
 

a) Primitives de fonctions usuelles : Soient f  ; u et v des fonctions 
numériques. 

 
Fonctions f définies par Fonctions Primitives F 
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f(x) = u’(x).un(x) 
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b) Primitives de fonction circulaires : 
 
 

 
 
 

Fonction f définies par Fonctions Primitives F 
f (x) = cosx F(x) = sinx + c 

f (x) = cos (ax + b) F(x) = 
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1 sin (ax + b) + c 

f (x) = sinx F(x) = – cosx + c 
f (x) = sin (ax + b) F(x) = 
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N.B : Cette nouvelle 
technique que je mets à votre 
disposition  vous permettra de 

retenir le plus simplement 
possible la dérivée et la 
primitive des fonctions  

Sinus  et Cosinus 


