LES NOMBRES COMPLEXES

Site MathsTICE de Adama Traoré Lycée Technique Bamako

I – Définition:

 1^{\bullet}) Définition 1 : Soit i le nombre imaginaire unité tel que $i^2 = -1$. On appelle ensemble des nombres complexes, l'ensemble noté ℂ et défini par :

$$\mathbb{C} = \{ z = a + ib; (a; b) \in \mathbb{R}^2 \}$$
.

- a est appelé la partie réelle de z notée Re(z);
- b est appelé la partie imaginaire de z notée Im(z).

2°) Égalité de deux nombres complexes :

Soient deux nombres complexes z = a + ib et z' = a' + ib'.

$$z = z' \iff \begin{cases} a = a' \\ b = b' \end{cases} \Leftrightarrow \begin{cases} \operatorname{Re}(z) = \operatorname{Re}(z') \\ \operatorname{Im}(z) = \operatorname{Im}(z') \end{cases}$$

3^{\bullet}) Opérations dans \mathbb{C} :

a) Addition:

Soit
$$z = a + ib \ et \ z' = a' + ib'$$
; on $a \ z + z' = (a + a') + i(b + b')$.

b) Multiplication:

$$z \times z' = (a + ib)(a' + ib') = (aa' - bb') + i(ab' + ba').$$

c) Division:

$$\frac{a+ib}{a'+ib'} = \frac{(a+ib)(a'-ib')}{(a')^2 + (b')^2} \quad \text{avec (a';b')} \neq (0;0)$$

 $(\mathbb{C}, +)$ est un groupe abélien ; (\mathbb{C}^*, \times) est un groupe commutatif.

La multiplication est distributive par rapport à l'addition dans \mathbb{C} , d'où (\mathbb{C} ,+, \times) est un corps.

II – Conjugué d'un nombre complexe:

1°) Définition 2:

On appelle conjugué du nombre complexe z = a + ib le complexe z = a - ib.

Exemples:
$$z = 2 - 3i \Rightarrow \overline{z} = 2 + 3i$$
; $z = -1 + 5i \Rightarrow \overline{z} = -1 - 5i$.

2°) Propriétés: Soit z = a + ib et z' = a' + ib'.

- Un complexe z est réel \Leftrightarrow Im $(z)=0 \Leftrightarrow z=\overline{z}$
- Un complexe z est imaginaire pur $\Leftrightarrow z \neq 0$ et $Re(z) = 0 \Leftrightarrow Z + \overline{Z} = 0$
- $\overline{z+z'} = \overline{z} + \overline{z'} \; ;$
- z = z
- $\overline{z \times z'} = \overline{z} \times \overline{z'} \quad ; \quad (\overline{z^n}) = (\overline{z})^n$

III - Module d'un nombre complexe:

1°) Définition 3:

On appelle module du nombre complexe z = a + ib, le réel positif défini par

$$|Z| = \sqrt{a^2 + b^2}$$
 (lire module de z)

Exemples : soit
$$z = 1 - i \sqrt{3} \Rightarrow |z| = \sqrt{1^2 + (\sqrt{3})^2} = 2$$
;
 $z_0 = -7 \Rightarrow |z_0| = 7$. $z_1 = 2i \Rightarrow |z_1| = 2$.

2°) Propriétés du module:

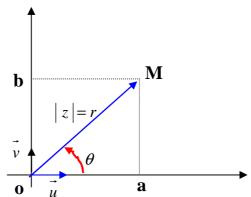
- $|z \times z'| = |z| \times |z'|$; $|z+z'| \le |z| + |z'|$

- $(|z|=0) \Leftrightarrow z=0;$ $(|z|=1) \Leftrightarrow \overline{z}=\frac{1}{z}$
- Si z = a alors |z| = |a|; si z = bi alors |z| = |b|.

IV- Argument d'un nombre complexe non nul:

Le plan P est muni d'un repère orthonormé direct $(O; \vec{u}; \vec{v})$. A tout nombre complexe

z = a + ib on associe le point $M \binom{a}{b}$. $z = a + ib \mapsto M \binom{a}{b}$.



- Le nombre complexe z = a + i b est appelé l'affixe du point M (a ; b) ou du vecteur (a ; b).
- Le point M et le vecteur \overrightarrow{OM} sont appelés respectivement le point image et le vecteur image du nombre complexe z.
- OM = d (O; M) = $\sqrt{a^2 + b^2}$ = | z | (module de z).
- Si A et B sont deux points du plan d'affixes respectives z_A et z_B alors le vecteur \overrightarrow{AB} a pour affixe $(z_B z_A)$ et $|z_B z_A| = AB$.

1°) Argument d'un nombre complexe non nul :

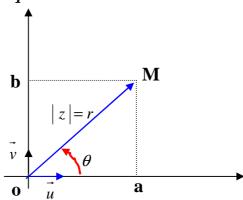
On appelle argument de z noté $\arg(z)$, le réel égal à une mesure de l'angle $(\vec{u}; \overrightarrow{OM})$. L'argument de z est définie à $2k\pi$ près ; $k \in \mathbb{Z}$. $\arg(z) = \theta + 2k\pi$ où θ est la détermination principale de l'argument. On écrit : $\arg(z) = \theta$ avec $\theta \in]-\pi$; π].

Si z $\neq 0$ alors toute mesure θ de l'angle $(\vec{u}; \overrightarrow{OM})$ est appelée un argument de z ; (Voir figure).

- 2°) Forme algébrique Forme trigonométrique d'un complexe non nul:
 - a) Forme algébrique :

. z = a + i b . est la forme algébrique du nombre complexe z.

b) Forme trigonométrique : Soit z = a + i b



on a:
$$\cos \theta = \frac{a}{OM}$$
 $\sin \theta = \frac{b}{OM}$ $\iff a = OM \cos \theta \quad et \quad b = OM \sin \theta$
 $z = a + ib \iff z = |z|(\cos \theta + i \sin \theta) \quad ou \quad z = r(\cos \theta + i \sin \theta)$

L'écriture : $z = Iz I (\cos \theta + i \sin \theta)$, est appelée forme trigonométrique de z.

c) Relation entre Forme Trigonométrique et Forme algébrique :

Soit z = a + ib de module $|z| = \sqrt{a^2 + b^2}$ et d'Argument θ .

$$\begin{cases} \cos \theta = \frac{a}{|z|} \\ \sin \theta = \frac{b}{|z|} \end{cases} \Rightarrow \theta = \dots (confère \ cercle \ trigonométrique)$$

3°) Propriétés de l'argument d'un nombre complexe non nul :

- P_1) Soit z = a (a $\in \mathbb{R}$), si a>0 alors Arg(z) = 0; si a<0 alors $Arg(z) = \pi$.
- P₂) Le nombre complexe nul n'a pas d'argument;

P₃) Soit z = bi (b
$$\in \mathbb{R}$$
), si b >0 alors Arg(z) = $\frac{\pi}{2}$; si a < 0 alors Arg(z) = $-\frac{\pi}{2}$.

 P_4) Soient $z = [|z|; \theta]$ et $z' = [|z'|; \theta']$.

. Arg(
$$z \times z'$$
) = Arg(z) + Arg(z') = $\theta + \theta'$.

Remarque : Si $z = [|z|; \theta]$ alors $z^2 = [|z|^2; 2\theta]$; $z^n = [|z|^n; n\theta]$.

P₅)
$$\operatorname{Arg}\left(\frac{z}{z'}\right) = \operatorname{Arg}(z) - \operatorname{Arg}(z')$$

Si
$$z = [|z|; \theta]$$
 et $z' = [|z'|; \theta']$ alors $\frac{z}{z'} = \left[\frac{|z|}{|z'|}; \theta - \theta'\right]$.

$$P_6$$
) $Arg(z^n) = n \times Arg(z)$

P₇)
$$\operatorname{Arg}\left(\frac{1}{z}\right) = -\operatorname{Arg}(z)$$

4°) Notation Exponentielle:

Soit $z = [1; \theta]$ on convient de noter $z = \cos\theta + i \sin\theta = e^{i\theta}$. Cette écriture est appelée la forme exponentielle de z.

Donc
$$z = r(\cos\theta + i \sin\theta) = re^{i\theta}$$
.

5°) Formule de Moivre – Formule d'Euler :

a) Formule de Moivre :

$$\forall n \in \mathbb{N}^*, (\cos \theta + i \sin \theta)^n = (\cos n\theta + i \sin n\theta)$$
.

b) Formule d'Euler:

$$Z = \cos\theta + i\sin\theta = e^{i\theta}$$

$$z = \cos\theta - i\sin\theta = e^{-i\theta}$$

$$2\cos\theta = e^{i\theta} + e^{-i\theta}$$

$$\cos\theta = \frac{e^{i\theta} + e^{-i\theta}}{2}$$
; $\sin\theta = \frac{e^{i\theta} - e^{-i\theta}}{2i}$

V- Linéarisation:

1^{\bullet}) Calcul de $\cos(nx)$ et $\sin(nx)$ en fonction de $\cos x$ et $\sin x$:

Pour n = 2 d'après la formule de Moivre $(\cos x + i \sin x)^2 = \cos 2x + i \sin 2x$ D'après la formule du binôme de Newton

 $(\cos x + i \sin x)^2 = (\cos^2 x - \sin^2 x) + i(2\sin x \cos x).$

Par identification on a : $\cos(2x) = \cos^2 x - \sin^2 x$ et $\sin(2x) = 2\sin x \cos x$.

■ Même procédé pour n = 3 ; 4 ; 5 ;.......

2°) Linéarisation:

$$z = \cos x + i \sin x$$

$$z = \cos x - i \sin x$$

$$z + \overline{z} = 2 \cos x$$

$$\cos x = \left(\frac{1}{2}\right)(z + \overline{z})$$

$$z = \cos x + i \sin x$$

$$\overline{z} = \cos x - i \sin x$$

$$z - \overline{z} = 2i \sin x$$

$$\sin x = \left(\frac{1}{2i}\right)(z - \overline{z})$$

$$\cos^{n} x = \left(\frac{1}{2}\right)^{n} \left(z + \frac{1}{z}\right)^{n} = \left(\frac{1}{2}\right)^{n} \left(e^{ix} + e^{-ix}\right)^{n}.$$

$$\sin^{n} x = \left(\frac{1}{2i}\right)^{n} \left(z - \frac{1}{z}\right)^{n} = \left(\frac{1}{2i}\right)^{n} \left(e^{ix} - e^{-ix}\right)^{n}.$$

De $z^n = \cos(nx) + i\sin(nx)$ et $z^n = \cos(nx) - i\sin(nx)$ on déduit que

$$z^{n} + \overline{z}^{n} = e^{nx} + e^{-nx} = 2\cos(nx) \qquad z^{n} - \overline{z}^{n} = e^{nx} - e^{-nx} = 2i\sin(nx)$$

Remarque:

$$z \times z = \cos^2 x + \sin^2 x = 1$$
 et $z^n \times z^n = 1$.

Exemple: Linéariser $\cos^3 x$ et $\sin^4 x$.

VI- Racine n^{ième} d'un nombre complexe:

Soit n un entier naturel strictement supérieur à 1.

- Définition: U étant un nombre complexe non nul, on appelle racine n^{ième} de U tout nombre complexe z tel que z n = U.
- Posons $u = [r; \theta] = r(\cos\theta + i\sin\theta)$ et $z = [\rho; x] = \rho(\cos x + i\sin x)$.

$$z^{n} = u \iff [\rho^{n}; nx] = [r; \theta] \Leftrightarrow \begin{cases} \rho^{n} = r \\ nx = \theta + 2k\pi \end{cases} \Leftrightarrow \begin{cases} \rho = \sqrt[n]{r} \\ x = \frac{\theta + 2k\pi}{n} \end{cases} \text{ d'où}$$

$$Z_{k} = \sqrt[n]{r} \left[\cos\left(\frac{\theta + 2k\pi}{n}\right) + i\sin\left(\frac{\theta + 2k\pi}{n}\right) \right] \quad avec \quad 0 \le k \le n - 1$$

$$\vdots$$

$$ou \quad Z_{k} = \sqrt[n]{r} \times e^{i\left(\frac{\theta + 2k\pi}{n}\right)}$$

Exemple:

Déterminer toutes les racines cubiques de l'unité c'est à dire résoudre z^3 = 1. Placer les points images A ; B ; C des solutions dans le plan complexe et en déduire la nature du triangle ABC.

Correction

$$Z^{3} = 1 \Leftrightarrow u = 1 \Leftrightarrow u = [1; 0].$$

$$Z_{k} = \sqrt[3]{1} \left(\cos \left(\frac{2k\pi}{3} \right) + i \sin \left(\frac{2k\pi}{3} \right) \right) \ avec \quad 0 \le k \le 2$$

- Si k = 0 alors $z_0 = 1 \mapsto A(1;0)$
- Si k = 1 alors $z_1 = \cos \frac{2\pi}{3} + i \sin \frac{2\pi}{3} = -\frac{1}{2} + i \frac{\sqrt{3}}{2}$. $\mapsto B\left(-\frac{1}{2}; \frac{\sqrt{3}}{2}\right)$
- Si k = 2 alors $z_2 = \cos \frac{4\pi}{3} + i \sin \frac{4\pi}{3} = -\frac{1}{2} i \frac{\sqrt{3}}{2} \mapsto C\left(-\frac{1}{2}; -\frac{\sqrt{3}}{2}\right)$.
- AB=AC=BC d'où le triangle ABC est équilatéral.

Théorème 1 :

Tout nombre complexe non nul U admet exactement n racines $n^{i\`{e}me}$. Si Z_k est une racine $n^{i\`{e}me}$ de U alors $|Z_k| = \sqrt[n]{|U|}$ et $\arg(z_k) = \frac{\arg(U) + 2k\pi}{n}$.

avec
$$0 \le k \le n-1$$
.

Théorème 2 :

Si z_0 est une racine $n^{i\grave{e}me}$ de U alors on obtient toutes les autres racines de U en multipliant z_0 successivement par les racines $n^{i\grave{e}mes}$ de l'unité ou 1.

Exemple: Déterminer les solutions dans de l'équation $z^4 = (2 + 3i)^4$.

Correction

 $z_0 = 2 + 3i$ est une solution particulière de l'équation. Comme les racines quatrième de 1 sont : 1 ; i : -1 ; - i. Alors les solutions de l'équation $z^4 = (2 + 3i)^4$ sont: $Z_1 = z_0 \times 1 = 2 + 3i$; $Z_2 = z_0 \times i = -3 + 2i$; $Z_3 = z_0 \times -1 = -2 - 3i$; $Z_4 = z_0 \times -i = 3 - 2i$. L'ensemble des solutions est $S = \{Z_1; Z_2; Z_3; Z_4\}$.

VII- Équations du second degré:

1°) Cas où les cœfficients sont des réels

Soit l'équation : $az^2 + bz + c = 0 \ (a \neq 0)$

Méthode de résolution

- Calculer le discriminant $\Delta = b^2 4ac$.
- Conclure suivant le signe de Δ.

a-/ si $\Delta > 0$ alors l'équation admet deux racines

$$Z_1 = \frac{-b - \sqrt{\Delta}}{2a}$$
 et $Z_2 = \frac{-b + \sqrt{\Delta}}{2a}$.

b-/ si
$$\Delta = 0$$
 alors $Z_1 = Z_2 = \frac{-b}{2a}$.

c-/ si Δ < 0 alors l'équation admet deux racines

$$Z_1 = \frac{-b - i\sqrt{|\Delta|}}{2a}$$
 et $Z_2 = \frac{-b + i\sqrt{|\Delta|}}{2a}$.

Exemple : résoudre dans \mathbb{C} ; $z^2 - 2z + 4 = 0$. la résolution donne comme ensemble de solution $S = \{1 - i\sqrt{3}; 1 + i\sqrt{3}.\}$.

2°) Racine carrée d'un nombre complexe :

Soient z et U deux nombres complexes. On appelle racine carrée du nombre complexe U tout nombre complexe z tel que $z^2 = U$.

(z est racine carrée de U) \Leftrightarrow ($z^2 = U$).

Tout nombre complexe non nul admet deux racines carrées opposées.

Soient z = x + iy et U = a + ib

(
$$z^2 = U$$
) équivaut à
$$\begin{cases} x^2 + y^2 = \sqrt{a^2 + b^2} \\ x^2 - y^2 = a \\ 2xy = b \end{cases}$$

Exemple:

Déterminer les racines carrées du nombre complexe z = -5 - 12i.

Correction

Soit $\delta = x + iy$ le nombre complexe tel que : $\delta^2 = z$ et $|\delta|^2 = |z|$. on a module de z est $|z| = \sqrt{25 + 144} = 13$.

$$\begin{cases} x^2 + y^2 = 13 & (1) \\ x^2 - y^2 = -5 & (2) \\ 2xy = -12 & (3) \end{cases}$$

$$(1) + (2) \Rightarrow x^2 = 4 \Leftrightarrow x = 2 \text{ ou } x = -2.$$

- Pour x = 2, (3) $\Rightarrow y = -3$; donc $\delta_1 = 2 3i$.
- Pour x = -2, (3) $\Rightarrow y = 3$; donc $\delta_2 = -2 + 3i$.
- δ_1 et δ_2 sont les racines carrées de z = -5 12i.

3°) Cas où les coefficients sont des nombres complexes :

Si le discriminant Δ est un nombre complexe de racines carrées δ_1 et δ_2 alors les solutions de l'équation $az^2+bz+c=0$ $(a\neq 0)$ sont :

$$Z_1 = \frac{-b + \delta_1}{2a} \quad et \quad Z_2 = \frac{-b + \delta_2}{2a} \quad .$$

Exemple ; résoudre dans : $(2i)z^2 - 3z - (1 + 3i) = 0$.

 $\Delta = -15 + 8i$. Cherchons les racines carrées de Δ .

soit $\delta = x + iy$ tel que : $\delta^2 = \Delta$ et $|\delta|^2 = |\Delta|$. On a $|\Delta| = 17$;

$$\begin{cases} x^2 + y^2 = 17 & (1) \\ x^2 - y^2 = -15 & (2) \\ 2xy = 8 & (3) \end{cases}$$
 (1) + (2) $\Rightarrow x^2 = 1 \ x = 1 \text{ ou } x = -1.$

- Si x = 1 alors (3) donne y = 4; donc $\delta_1 = 1 + 4$ i.
- Si x = -1 alors (3) donne y = -4; donc $\delta_2 = -1 4$ i.

$$z_{1} = \frac{3+1+4i}{4i} = \frac{4+4i}{4i} = \frac{1+i}{i} = \frac{-1+i}{-1} = 1-i \quad ; \quad z_{1} = 1-i$$

$$z_{2} = \frac{3-1-4i}{4i} = \frac{2-4i}{4i} = -1-\frac{1}{2}i \quad ; \quad z_{2} = -1-\frac{1}{2}i .$$

L'ensemble des solutions de l'équation est : $S = \left\{ 1-i; -1-\frac{1}{2}i \right\}$.

VIII – Applications géométriques:

1) Interprétation géométrique du langage complexe :

Soient z_A ; z_B ; z trois nombres complexes distincts d'images respectives A; B; et M dans le plan complexe P.

$$Z = \frac{z - z_B}{z - z_A} \Leftrightarrow \begin{cases} |Z| = \frac{MB}{MA} \\ Arg(Z) = (\overbrace{\overline{MA}; \overline{MB}}) \end{cases}$$

D'autre part arg $(z_B-z_A) = (\vec{i}, \overrightarrow{AB}) + 2k\pi$. $-\arg(z_B-z_A) = (\overrightarrow{AB}; \vec{i}) + 2k\pi$. En particulier:

$$\begin{vmatrix}
z_A \mapsto A \\
z_B \mapsto B & alors \\
z_C \mapsto C
\end{vmatrix} = \frac{\begin{vmatrix} z_C - z_A \\ z_B - z_A \end{vmatrix}}{\begin{vmatrix} AC \\ AB \end{vmatrix}} = \frac{AC}{AB}$$

$$\begin{vmatrix}
\overrightarrow{AB} & \overrightarrow{AC} \\ \overrightarrow{AB} & \overrightarrow{AC}
\end{vmatrix} = \arg\left(\frac{z_C - z_A}{z_B - z_A}\right)$$

- 2) Traductions complexes de certaines configurations usuelles :
 - a) Vecteurs orthogonaux Vecteurs colinéaires : Soit les complexes z_A ; z_B et z_C d'images respectives A; B; C.
- Les vecteurs \overrightarrow{AB} et \overrightarrow{AC} sont orthogonaux \Leftrightarrow

$$(\overrightarrow{AB}; \overrightarrow{AC}) = \frac{\pi}{2} [2\pi]ou - \frac{\pi}{2} [2\pi] \iff \frac{z_C - z_A}{z_B - z_A}$$
 est un imaginaire pur.

- Les vecteurs \overrightarrow{AB} et \overrightarrow{AC} sont colinéaires \Leftrightarrow

$$(\overrightarrow{AB}; \overrightarrow{AC}) = 0 [2\pi] ou \ \pi[2\pi] \iff \frac{z_C - z_A}{z_B - z_A} \text{ est un réel.}$$

c) Exemple:

Soit les complexes -1-i; 1+i; -1+i d'images respectives les points A ; B ; C. Déterminer le module et l'argument de $Z=\frac{z_C-z_A}{z_B-z_A}$. En déduire la nature du triangle ABC.

Correction

$$Z_{A} = -1 - i \mapsto A(-1; -1); \quad Z_{B} = 1 + i \mapsto B(1; 1); \quad Z_{C} = -1 + i \mapsto C(-1; 1).$$

$$AC = 2; \quad AB = 2\sqrt{2}; \quad |z| = \frac{\left|z_{C} - z_{A}\right|}{\left|z_{B} - z_{A}\right|} = \frac{AC}{AB} = \frac{\sqrt{2}}{2};$$

$$Arg(Z) = Arg\left(\frac{z_{C} - z_{A}}{z_{B} - z_{A}}\right) = Arg\left(\frac{2i}{2 + 2i}\right) = Arg\left(\frac{i}{1 + i}\right) = Arg\left(\frac{1 + i}{2}\right) = Arg\left(\frac{1}{2} + \frac{1}{2}i\right) = \theta$$

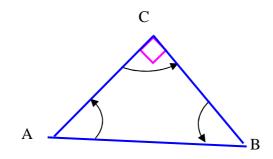
$$\begin{cases} \cos\theta = \frac{\sqrt{2}}{2} \\ \sin\theta = \frac{\sqrt{2}}{2} \end{cases} \Rightarrow \theta = \frac{\pi}{4} + 2k\pi \quad d'où \quad Arg(Z) = \frac{\pi}{4}. \quad Z = \left[\frac{\sqrt{2}}{2}; \frac{\pi}{4}\right].$$

- Nature du triangle ABC

$$\arg\left(\frac{z_C - z_A}{z_B - z_A}\right) = \frac{\pi}{4} + 2k\pi \iff \left(\overline{AB}, \overline{AC}\right) = \frac{\pi}{4} [2\pi]. \text{ De façon analogue on a:}$$

$$\arg\left(\frac{z_B - z_C}{z_A - z_C}\right) = \arg\left(\frac{2}{-2i}\right) = \arg(i) = \frac{\pi}{2} [2\pi] \iff \left(\overline{CA}, \overline{CB}\right) = \frac{\pi}{2} [2\pi].$$

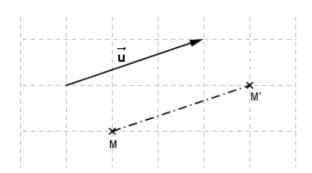
$$\arg\left(\frac{z_A - z_B}{z_C - z_B}\right) = \frac{\pi}{4} \iff \left(\overline{BC}, \overline{BA}\right) = \frac{\pi}{4} [2\pi]. \text{ D'où ABC est un triangle rectangle et isocèle.}$$



IX – Nombres complexes et transformations:

1 – Translations

Soient M et M' deux points d'affixes respectifs z et z'. Le vecteur \vec{u} d'affixe z_0 . Déterminons l'écriture complexe de la translation t de vecteur \vec{u} qui transforme M en M'.



$$t_{\overrightarrow{u}}(M) = M' \Leftrightarrow \overrightarrow{MM'} = \overrightarrow{u} \Leftrightarrow z' - z = z_{\overrightarrow{u}} \Leftrightarrow z' = z + z_{\overrightarrow{u}}$$

 $\mathbf{z'} = \mathbf{z} + Z_{\vec{u}}$, est l'écriture complexe de la translation de vecteur \vec{u} .

Exemple : Soit t la translation de vecteur \vec{u} d'affixe $z_{\vec{u}} = 2 + i$.

Déterminer l'écriture complexe de la transformation t.

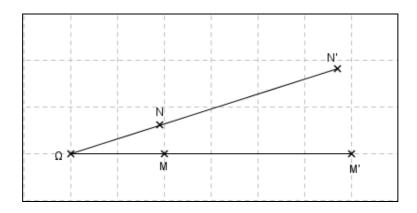
Soit M' le point d'affixe z', image de M d'affixe z par la transformation t.

$$t_{-i}(M) = M' \Leftrightarrow \overrightarrow{MM'} = \overrightarrow{u} \Leftrightarrow z' - z = z_{-i} \Leftrightarrow z' - z = 2 + i \Leftrightarrow z' = z + (2 + i)$$
.

L'écriture complexe de la translation t est : z'=z+2+i.

2- L'Homothétie:

Soient M et M' deux points d'affixes respectifs z et z'. Soit Ω un point du plan d'affixe Z_{Ω} . Déterminons l'écriture complexe de l'homothétie h de centre Ω et de rapport k qui transforme M en M'.



$$\begin{split} h_{(\Omega;k)}\big(M\big) &= M' \iff \Omega M' = k \times \Omega M \iff z' - z_\Omega = k\big(z - z_\Omega\big) \Leftrightarrow z' = z_\Omega + kz - k\,z_\Omega \iff \\ Z' &= k\,Z + (1-k)\,Z_\Omega\,. \end{split}$$

.
$$Z' - Z_{\Omega} = k (Z - Z_{\Omega})$$
 ou $Z' = k Z + (1 - k) Z$,

est l'écriture complexe de l'homothétie de centre Ω et de rapport k.

Exemple 2:

Soit h l'homothétie de centre Ω d'affixe $z_{\Omega} = 2 + i$ et de rapport -2. Déterminer l'écriture complexe de la transformation h.

- Soit M' le point d'affixe z', image de M d'affixe z par l'homothétie h.

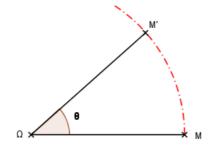
$$h_{\Omega}(M) = M' \Leftrightarrow \overrightarrow{\Omega M'} = -2\overrightarrow{\Omega M} \Leftrightarrow z' - z_{\Omega} = -2(z - z_{\Omega})$$

$$z' - (2+i) = -2z + 2(2+i) \Leftrightarrow z' - 2 - i = -2z + 4 + 2i \Leftrightarrow z' = -2z + 6 + 3i.$$
I 'écriture complexe de l'homothétie h est : $z' = -2z + 6 + 3i$.

L'écriture complexe de l'homothétie h est : z' = -2z + 6 + 3i.

3 – La Rotation :

Soient M et M' deux points d'affixes respectifs z et z'. Soit Ω un point du plan d'affixe Z_{Ω} . Déterminons l'écriture complexe de la rotation r de centre Ω et d'angle θ qui transforme M en M'.



$$r_{(\Omega;\theta)}(M) = M' \Leftrightarrow \begin{cases} \Omega M' = \Omega M \\ \left(\overline{\Omega M'}, \overline{\Omega M} \right) = \theta \end{cases} \Leftrightarrow \begin{cases} \left| Z' - Z_{\Omega} \right| = \left| Z - Z_{\Omega} \right| \\ Arg\left(\frac{Z' - Z_{\Omega}}{Z - Z_{\Omega}} \right) = \theta \end{cases} \Leftrightarrow$$

$$\begin{cases} \frac{\left|Z'-Z_{\Omega}\right|}{\left|Z-Z_{\Omega}\right|} = 1 \\ \Leftrightarrow \frac{Z'-Z_{\Omega}}{Z-Z_{\Omega}} = \left[1;\theta\right] \iff \frac{Z'-Z_{\Omega}}{Z-Z_{\Omega}} = \left(\cos\theta + i\sin\theta\right) \\ Arg\left(\frac{Z'-Z_{\Omega}}{Z-Z_{\Omega}}\right) = \theta \end{cases}$$

$$Z'-Z_O = (\cos\theta + i\sin\theta)(Z-Z_O) \Leftrightarrow Z'-Z_O = e^{i\theta}(Z-Z_O)$$

$$\mathbf{Z'} - \mathbf{Z}_{\Omega} = (\cos\theta + i\sin\theta) (\mathbf{Z} - \mathbf{Z}_{\Omega})$$
 ou $\mathbf{Z'} - \mathbf{Z}_{\Omega} = e^{i\theta} (\mathbf{Z} - \mathbf{Z}_{\Omega})$,

est l'écriture complexe de la rotation de centre Ω et d'angle θ .

Exemple:

Soit la rotation r de centre A d'affixe $Z_A = 3i$ et d'angle $\theta = \frac{\pi}{2}$. Déterminer l'écriture complexe de la transformation r.

- Soit M' le point d'affixe z', image de M d'affixe z' par la rotation r.

$$r_{A}(M) = M' \Leftrightarrow AM' = AM \ et \ (\overrightarrow{AM}; \overrightarrow{AM'}) = \frac{\pi}{2} + 2k\pi$$

$$\Leftrightarrow z' - z_{A} = b(z - z_{A}) \ \text{avec} \ b = \cos\left(\frac{\pi}{2}\right) + i\sin\left(\frac{\pi}{2}\right) = e^{i\frac{\pi}{2}} = i.$$

$$Donc \quad z' - z_{A} = b(z - z_{A}) \Leftrightarrow$$

$$z' - 3i = i(z - 3i) \Leftrightarrow$$

$$z' - 3i = iz + 3 \Leftrightarrow$$

$$z' = iz + 3i + 3 \Leftrightarrow$$

$$z' = i(z + 3) + 3.$$

L'écriture complexe de la rotation r est : z'=i(z+3)+3.

4- Recherche des lieux géométriques :

Soient A; B; $I(x_0; y_0)$ et M(x; y) des points du plan.

Si les points M (x; y) du plan vérifient:	Alors l'ensemble (E) des points M cherchés est :
ax + by + c = 0	La droite (9) d'équation : $ax + by + c = 0$
$y = \frac{ax + b}{cx + d} avec c \neq 0$	L'hyperbole (\mathcal{H}) d'équation: $y = \frac{ax+b}{cx+d}$
$(x-x_0)^2 + (y-y_0)^2 = r^2$	Le cercle (\mathscr{C}) de centre I (x_0 ; y_0) et de rayon r.
MA = MB	La droite (Δ) médiatrice du segment [AB]
$\overrightarrow{MA} \bullet \overrightarrow{MB} = 0$	Le cercle (%) de diamètre le segment [AB]
$y = ax^2 + bx + c$	La parabole (\mathcal{P}) d'équation : $y = ax^2 + bx + c$